See Attached Distribution List

Dear :

Re: Guidance to Establish Equivalence or Relative Potency of Safety and Efficacy of a Second Entry Short-Acting Beta$_2$-Agonist Metered Dose Inhaler (MDI)

Please find attached the Therapeutic Products Programme (TPP) Guidance to Establish Equivalence or Relative Potency of Safety and Efficacy of a Second Entry Short-Acting Beta$_2$-Agonist Metered Dose Inhaler (MDI).

The attached guidance document deals only with the short-acting beta$_2$-agonist bronchodilator metered dose inhalers. The inhaled corticosteroids will be the subject of a separate guidance document to be issued in the future.

Please note that a draft guidance was in use since 1992. The principles outlined in the 1992 draft still apply i.e. equivalence could be established based on "bronchodilation equivalence protocol" and "bronchoprotection protocol". The main difference in the present revision is that either one may be used instead of the initial requirement for both.

.../2

- 2 -

This guidance is effective immediately. If you have
any questions or comments, please do not hesitate to contact Dr. Paul Roufail, Head, Endocrinology, Metabolism and Allergy Unit, Bureau of Pharmaceutical Assessment at (613) 941-3172. With respect to statistical issues, please contact Mr. Eric Ormsby at (613) 941-3694.

Dann M. Michols
Director General

Attachment

PREPARED BY: Paul Roufail
APPROVED BY: Marta Caris
DATE: April 16, 1999
GUIDANCE TO ESTABLISH EQUIVALENCE OR RELATIVE POTENCY OF SAFETY AND EFFICACY OF A SECOND ENTRY SHORT-ACTING BETA$_2$-AGONIST METERED DOSE INHALER

February, 1999
Endocrinology, Metabolism and Allergy Unit
Bureau of Pharmaceutical Assessment
Therapeutic Products Programme
Health Canada
TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. PURPOSE ... 1
3. CONSIDERATIONS .. 2
4. SAFETY STUDY ... 4
5. DESIGN, ANALYSIS AND EQUIVALENCE STANDARD 5

RELEVANT INFORMATION FOR DESIGNING MDI STUDIES 6

APPENDIX 1: BRONCHODILATOR STUDY PROTOCOL 9
 A. Study Question .. 9
 B. Study design .. 9
 C. Methods ... 10
 D. Preselection Evaluation ... 10
 E. Selection of study subjects ... 10
 F. Sample size .. 12
 G. Pre-study Procedures .. 12
 H. Study Day activities .. 13
 I. Data Summary and Analysis ... 15
 J. Criteria ... 15
 K. Ethical considerations ... 16
 L. References ... 16

APPENDIX 2: BRONCHOPROTECTION PROTOCOL 17
 A. Study question .. 17
 B. Study design .. 17
 C. Selection of study subjects ... 18
 D. Sample size .. 19
 E. Procedures .. 20
 F. Methods ... 22
 G. Outcome measurements ... 22
 H. Data analysis ... 23
 I. Criteria ... 23
 J. Ethical considerations ... 24
 K. References ... 24

APPENDIX 3: DRUG WASHOUT TIMES .. 25
1. INTRODUCTION

This guidance document details the recommendations to second entry applicants on methods to establish the equivalence or relative potency of the safety and efficacy of short-acting, beta_2^-agonist bronchodilators delivered by inhalation aerosol (metered dose inhaler; MDI). The document takes into account the comments received from stakeholders including the Standards Committee of the Canadian Thoracic Society, the Canadian Pharmaceutical Manufacturers Association, the Canadian Drug Manufacturers Association and from many individuals. Although two specific study protocols are presented, other designs or types of studies may be considered provided the method is properly validated and upon prior consultation with the Therapeutic Products Programme (TPP).

2. PURPOSE

This guidance outlines the types of clinical studies which should be conducted in order to establish the equivalence of a second entry, short-acting, beta_2^- agonists, metered dose inhaler (MDI). Two different types of pharmacodynamic studies are recommended. Either of these study protocols may be used to satisfy the
comparative efficacy requirement provided the comparison is between identical β_2-agonists with similar delivery systems. This document also outlines some issues which the sponsor should consider when planning such studies.

3. CONSIDERATIONS

It is agreed that β_2-agonists act topically on specific receptors in the airways of the lungs and that systemic absorption does not necessarily reflect airway absorption or effect. Thus the usual bioequivalence determination via blood levels is not appropriate unless it can be shown that the analyte measured in the blood indicates what went through the lungs and its effect. Since in vivo and in vitro correlations have not been established, reliance on only in vitro data is not enough. Separate guidelines exist which address in vitro study issues.

The next practical method of showing therapeutic equivalence, is through the use of pharmacodynamic (PD) measures. Two potential PD measures are bronchodilation and bronchoprotection. The Canadian Asthma Practice Guidelines suggest that a short acting inhaled β_2-agonist should be used only when needed. This recommendation was made because the need for a β_2-agonist gives an indication of control (or lack of) and regular use several times daily leads to loss of its protective effect and possibly worsening asthma. This would indicate that bronchodilation is the most clinically relevant measure to use. However there appears to be no evidence that the receptors controlling dilation or protection response are in different locations.
of the lung, thus suggesting either measure would be an indication of the amount of
drug delivered to the appropriate location in the lungs.

The first generic salbutamol MDI was approved in 1989. This approval was
based on in vitro measures of pharmaceutical equivalence and clinical studies
including two period, two treatment crossover designs which compared
bronchodilation responses from two puffs of the innovator’s product with two puffs
of the second entry (test) product. Criticism of this design was that there was no
way to determine with just one dose whether the subjects were close to or on the
plateau of the dose-response curve. If subjects were near the plateau, the ability of
the study to discriminate differences (sensitivity) would be low and the comparison
of duration of response from a plateau level may be subject to high variability. Thus
it is recommended that more than one dose of both the test and reference products
be measured in order to ensure sensitivity of the study. Subjects may be included or
excluded based on a criterion defining an acceptable response to the doses to be
used. The recommended design, therefore, has minimally four treatments - one and
two puffs of both the reference and test products.

The choice of subjects is very important in these trials. Subjects should be in
a stable state. Clearly, when testing for bronchodilation, there needs to be
bronchodilation demonstrable and different degrees of this. However for
bronchoprotective studies, the FEV\textsubscript{1} should ideally be normal or close to it and the
degree of responsiveness should be measurable after \(\beta_2\)-agonist so as to be able to
measure the degree of protection. For bronchoprotective studies it is also advisable that the patients be β₂-agonist naive or at least did not use them on a daily basis. Medications listed in appendix 3 should not be used within the listed washout period.

The two recommended types of studies are given in Appendix 1 and 2. Appendix 1 outlines the basic protocol for executing the Bronchodilation study and Appendix 2 outlines the Bronchoprotection study.

4. SAFETY STUDY

The safety assessment should include monitoring for acute adverse events (heart rate, tremor, serum potassium etc). A dose response comparison of the acute adverse events between the test and reference drug products should be provided and should include the usually prescribed dose and doses higher than normally prescribed. The test product should not cause greater side effects than the reference product.

Long term safety testing is usually not required for a second entry bronchodilator aerosol inhaler unless there are changes which warrant such assessment i.e. changes in formulation and/or propellants etc. or there is cause for concern.

5. DESIGN, ANALYSIS AND EQUIVALENCE STANDARD

Data for declaring equivalency of inhaled short-acting beta₂-agonist bronchodilators should be collected according to a 4 sequence, 4 period, 4 treatment
crossover design. Each subject will receive 1 and 2 puffs (1 puff of 100 µg and 2 puffs amount to 200 µg) of each of the test and standard formulations. Analysis of variance (ANOVA) should be carried out including the effects given in Appendix 4. Least squares estimates and the residual variance required to calculate the 90% confidence interval for relative potency of test to reference products are also given in Appendix 4. The resulting confidence interval for the relative potency must be entirely contained within the interval (0.80, 1.25) in order to establish equivalence.

This protocol is acceptable for beta$_2$-agonist inhaler equivalence studies. If equivalence is not documented with these studies, then a 3 dose (e.g. 1, 2 and 4 puffs) study must be conducted to determine relative potency.

RELEVANT INFORMATION FOR DESIGNING MDI STUDIES

2. Commission of the European Communities-Committee for Proprietary Medicinal Products. Note for Guidance 111/5378/93 - Final.

APPENDIX 1

BRONCHODILATOR STUDY PROTOCOL

This protocol is an example of the considerations required in a single dose protocol.

A. Study Question

Are the relative potencies as measured by the magnitude and duration of increase in FEV₁ for the test to the reference product within 80-125%?

B. Study design

1. Measurement of the magnitude and duration of effect of 1 and 2 puffs for each of the test and reference products.

2. Four period, four treatment crossover study to allow within subject comparisons (2).

3. Randomization of treatment order. Ideally the same number of subjects receive the same order of treatments (balanced design). One of the four sequence designs of Williams is recommended (3).

4. Double-blind to minimize bias.

5. Appropriate test drug washout time between study periods to ensure no carry over effects.

6. Study completion over a short enough period of time to make variation in subject condition less likely.
C. Methods

1. FEV$_1$ should be performed with equipment and methods which meet ATS guidelines (1).

D. Preselection Evaluation

1. Complete medical history and physical examination performed within one week before study day 1.

2. Laboratory tests and screening procedures including:
 a) FEV$_1$ (forced expiratory volume in 1 second) - see inclusion criteria.
 b) Blood chemistries.
 c) Urine analysis
 d) CBC.
 e) 12 lead ECG.
 f) A urine pregnancy test for women of childbearing potential.

E. Selection of study subjects

Inclusion Criteria:

1. Subjects with airflow obstruction as demonstrated by FEV$_1$/VC of < 80% after withholding temporary relief medications for recommended time (Appendix 3). The airflow obstruction should represent a range of severity with a mixture of subjects with an FEV$_1$ between 40-60% of predicted FEV$_1$ and of between 60-79% of predicted. These former
subjects can be safely enrolled providing their condition is stable and they are on optimum corticosteroid treatment. There should be an acute reversibility as demonstrated by an improvement in FEV\(_1\) of \(>15\%\) of their predicted FEV\(_1\), 15 minutes after two puffs of the reference product.

2. The condition causing the airflow obstruction should have been stable on the same regular treatment for at least 4 weeks.

3. Nonsmokers for a long enough period to avoid variable effects during the study eg. 4 weeks.

4. Males and non-pregnant females, ages 18-60 years.

5. Ability to be trained in the proper use of an MDI

6. Able to give written informed consent.

Exclusion criteria:

1. Intolerance to aerosolized \(\beta_2\)-adrenergic agonists.

2. History of side effects to any of the MDI ingredients.

3. Evidence of respiratory tract infection in the 6 weeks before the study.

4. Seasonal or episodic exposure to an allergen or occupational chemical sensitizer to which the person is sensitized during the study.

5. History of cystic fibrosis or bronchiectasis.
6. Inability to withhold temporary withdrawal of medications which need to be withheld during the study.

7. Having received an investigational drug within 30 days before the current study.

8. Treatment with β_2-adrenergic blocking drugs.

9. History of current cardiovascular, renal, neurologic, liver or endocrine dysfunction.

10. Inability to perform outcome measurements optimally.

F. Sample size

The sample size should be estimated by the investigator and is based on the most variable measure which must pass the bioequivalence standard. It is recommended that with a minimum of 80% power, the 90% confidence interval will fall within the 80-125% standard. Sample size is based on the intra-subject CV and the expected potency difference between test and reference products. Provision for dropouts should be included in the size calculations.

G. Pre-study Procedures

All subjects must be volunteers.

Preliminary evaluation should aim to satisfy subject inclusion and exclusion criteria and be determined within one week of the start of the study.

Preliminary measurements to be used for subsequent comparisons (e.g.
FEV$_1$ should be made at the same time of day as the study testing to minimize the effects of diurnal variation. Confounding factors which might influence airflow obstruction must be carefully avoided before and during the studies. These include ingestion of caffeine, vigorous exercise, inhalation of cold air and environmental smoke, dust or smells which might trigger airflow obstruction. The duration of avoidance prior to study depends on the likely duration of the effect of each factor. Subjects should be assessed to ensure they are able to comply with study procedures.

H. Study Day activities

1. Pre-dose procedures.
 a. Confirm that subjects to continue to meet inclusion and exclusion criteria and have withheld medications appropriately (Appendix 3).
 b. The FEV$_1$ performed at the same time of day as the pre-study measurement should not differ by more than \pm 10%.

2. Drug administration

Care should be taken to maintain blinding.

Inhalers should be "primed" in a uniform fashion immediately before administration and away from any possibility of inhalation by the subject eg. discharged 2 times into a bag away from the patient.
The method of inhalation, use of add-on devices (eg. valved holding chamber with pressurized inhaler), duration of breath hold after inhalation and the time between repeated inhalations must be specified and regulated. For example, inhalation from the inhaler will be done as a slow and deep inhalation from FRC followed by a ten second breath hold. The slow inhalation should be at approximately 30 L/min and this can be assured by training with a placebo inhaler connected to a Vitalograph MDI modified compact spirometer (Vitalograph Limited, Buckingham, UK) which measures peak inspired flow, inspiratory volume and breath holding times. On each visit the patient can be allowed to practice their inhalation technique with a placebo inhaler to ensure proper inhalation technique.

3. Outcome measurements

a. \(\text{FEV}_1 \). Measurements should be made in the sitting position. They should be made before and (repeated at appropriate times) after the inhaled drug is administered. This will identify the likely onset, maximum response and duration of action of reference and test medications. eg. suggested times for tests after administering salbutamol are 5, 10, 15, 20, 25, 30 then every 30 min for a total of 6 hours.
b. Cardiovascular. Heart rate, 30 sec ECG rhythm strip (lead #2) and systolic and diastolic BP should be monitored at the same time as FEV\textsubscript{1} measurements.

c. Other side effects. Hand tremor should be measured at the same time as FEV\textsubscript{1} measurements. Generally these measurements should be performed at sufficient frequency to detect side effects.

I. Data Summary and Analysis

The FEV\textsubscript{1} data should be presented in tables for each subject and each treatment. The tables should contain subject id, period, sequence, pre-study FEV\textsubscript{1}, baseline FEV\textsubscript{1} and FEV\textsubscript{1} for each time post dosing, maximum FEV\textsubscript{1}, time of maximum FEV\textsubscript{1}, FEV\textsubscript{1} as a % of baseline and an Area Under the FEV\textsubscript{1} Curve (AUFC). Means and standard deviations should be presented for all variables. Confidence intervals for the relative potency should be constructed using the least squares means and the error mean squares from the appropriate Analysis of Variance (see Appendix 4 for more details).

J. Criteria

The criteria to enable the product to be marketed in Canada are:
1. **Pulmonary response**
 The 90% confidence intervals for relative potency for maximum FEV$_1$ and AUFC must be contained entirely within 80-125%.

2. **Cardiovascular Response**
 The test product must not produce a statistically significant worse response than the reference for vital signs.

3. **Adverse Reactions**
 The incidence of adverse reactions with the test product must not be significantly greater than that seen with the reference product.

K. **Ethical considerations**
 Individual studies should receive approval from the TPP for the study of new medications and the appropriate local ethics committee, receive signed informed consent from subjects taking part and be undertaken in accordance with the "declaration of Helsinki" and Canadian MRC guidelines concerning human investigation.

L. **References**
APPENDIX 2

BRONCHOPROTECTION STUDY PROTOCOL

This protocol is an example of the considerations required in such a study.

A. Study question

Is the relative potency as measured by the magnitude of protection against methacholine airway constriction for the test to reference product between 80-125%?

B. Study design

1. Measurement of the magnitude of protection for 1 and 2 puffs of each of the test and reference products.

2. Four period, four treatment crossover study to allow within subject comparisons (3).
3. Randomization of treatment order. Ideally the same number of subjects receive the same order of treatments (balanced design). One of the four sequence designs of Williams is recommended (4).

4. Double-blind to minimize bias.

5. Appropriate test drug washout time between study periods to ensure no carry over effects.

6. Study completion over a short enough period of time to make variation in subject condition less likely.

C. Selection of study subjects

Inclusion criteria

1. Male and non-pregnant females, ages 18-60 years.

2. Subjects with asthma indicated by symptoms and airway hyperresponsiveness to methacholine with a \(PC_{20} \leq 4 \text{ mg/ml} \) when the baseline \(FEV_1 \) is \(\geq 70\% \) predicted or \(FEV_1/VC \) is \(\geq 70\% \) after withholding temporary relief medicines for the recommended time (Appendix 3).

3. The asthma should be stable on the same regular treatment for at least 4 weeks, unlikely to exacerbate during the period of study because of, for example, seasonal allergen exposure.
4. The subjects could be on no regular treatment or on a regular dose of inhaled steroid which should be kept the same during the study. Subjects should be using an inhaled β$_2$-agonist only when needed and preferably less than daily and no more than twice daily to minimize β$_2$-agonist-loss of the bronchoconstriction protective effect of the drug.

5. The PC$_{20}$ methacholine should increase at least 4-fold after inhaling the dose (2 puffs) of the reference.

6. Non smokers for at least one month before the study to be more certain that smoking is unlikely to make the subject unstable during the study.

7. Ability to be trained to use an MDI properly.

8. Able to give written informed consent.

Exclusion criteria:

1. Intolerance to aerosolized β$_2$-adrenergic agonists or methacholine.

2. History of side effects to any of the MDI ingredients.

3. Evidence of respiratory tract infection within 6 weeks before the study.

4. Seasonal or episodic exposure to an allergen or occupational chemical sensitizer to which the person is sensitized during the study.

5. History of cystic fibrosis or bronchiectasis.

6. Inability to tolerate temporary withdrawal of medication which need to be withheld during the study (Appendix 3).

7. Having received an investigational drug within 30 days before the study.
8. On treatment with β₂-adrenergic receptor antagonist.
9. History of cardiovascular, renal, neurologic, liver or endocrine dysfunction.
10. Inability to perform outcome measurement optimally.
11. Inability to measure PC₂₀ methacholine after the highest dose of reference bronchodilator to be used in the study.

D. Sample size

The sample size should be estimated by the investigator and is based on the most variable measure which must pass the bioequivalence standard. It is recommended that with a minimum of 80% power, the 90% confidence interval will fall within the 80-125% standard. Sample size is based on intra-subject CV and the expected difference in potencies between test and reference products.

E. Procedures

There should be one or two pre-study subject evaluation days and four study days. On the first evaluation day subject characteristics should be documented by history, examination, spirometry and allergy prick skin tests with common allergen extracts. Other standard investigations may be needed to satisfy inclusion and exclusion criteria. Written informed consent must be obtained. On this day or a second evaluation day, two methacholine inhalation tests should be carried out. The second should be
done after recovery from the first at a specified time, eg. two hours, and ten minutes after inhalation of 2 puffs of the reference. The first methacholine test should be done at the same time of day as subsequent tests on study days to eliminate the effects of diurnal variation. Confounding factors which might influence airflow obstruction must be carefully avoided before and during these studies. These include ingestion of caffeine, vigorous exercise, inhalation of cold air and environmental smoke, dust or smells which can trigger airflow obstruction.

On each study day, the pretreatment FEV$_1$ should be performed at the same time of day as the FEV$_1$ obtained during the pre-study evaluation, and should not differ by more than + 10%. The test drug is then inhaled and, after ten minutes, the methacholine test begun. The second evaluation day and each study day should be separated by a long enough period to avoid an effect of the drug on PC$_{20}$ eg. 2 days, and short enough to complete the study as quickly as possible to minimize confounding factors, e.g. 7 days. Drug side effects such as pulse, BP and tremor should be monitored just before each methacholine test.

The use of test drug inhalers must be standardized and closely supervised. The inhalers should be "primed" in a uniform fashion and away from any possibility of inhalation by the subject, e.g. discharged 2 times into a plastic bag immediately before administration. The method of inhalation, use of
add-on devices (e.g. valved holding chamber with pressurized inhaler), duration of breath hold after inhalation and the time between repeated inhalations must be specified and supervised during the study. For example, inhalation from the inhaler will be done as a slow and deep inhalation from FRC followed by a ten second breath hold. The slow inhalation should be at approximately 30 L/min and this can be assured by training with a placebo inhaler connected to a Vitalograph MDI modified compact spirometer (Vitalograph Limited, Buckingham, UK) which measures PIF, inspiratory volume and breath holding times. On each visit the patient can be allowed to practice their inhalation technique with a placebo inhaler to ensure proper inhalation technique.

F. Methods

1. FEV\textsubscript{1} should be performed with equipment and methods which meet ATS guidelines. (1)

2. Methacholine inhalation tests should be performed by a standardized method with concentrations increasing if necessary up to 256 mg/ml and PC\textsubscript{20} calculated or obtained by linear interpolation of the last two points (2). This test should be performed by experienced staff to avoid technical errors in its performance and interpretation.
3. In the pre-study evaluation, the methacholine test should be performed in the usual dose-response way to determine the PC_{20}.

4. In the randomized control trial the methacholine tests can be started 10 minutes after the bronchodilator with a dose of methacholine two-fold dilutions below the prestudy PC_{20}. This will shorten the test and allow the PC_{20} after active drug inhalations to be determined at about 30 minutes.

5. The quality and stability of the methacholine solutions used in the study should be checked e.g. by determining the methacholine concentration at the beginning and end of the study by high-performance liquid chromatography.

G. Outcome measurements

1. Pulmonary. The primary outcome measurement is measured at the time of the expected maximum effect of the drug (about 30 minutes).

2. Cardiovascular. Heart rate and systolic and diastolic BP should be monitored before drug inhalation and before each methacholine test.

3. Other side effects. Hand tremor should be measured at the same times.

H. Data analysis
The FEV$_1$ and PC$_{20}$ data should be presented in tables for each treatment. The tables should contain subject id, period, sequence, pre-study FEV$_1$, each study day baseline FEV$_1$, FEV$_1$ for each time post challenge, and PC$_{20}$. Means and standard deviations should be presented for all variables. Confidence intervals for the relative potency should be constructed using the least squares means and the error mean squares from the appropriate Analysis of Variance (see Appendix 4 for more details).

I. Criteria

The criteria to enable the product to be marketed in Canada are:

1. Pulmonary Response

 The 90% confidence interval for the relative potency for test to reference PC$_{20}$ must be contained entirely within 80-125%.

2. Cardiovascular Response

 The test product must not produce a significantly worse response than the reference for vital signs.

3. Adverse Reactions

 The incidence of adverse reactions with the test product must not be significantly greater than that seen with the reference product.

J. Ethical considerations
Individual studies should receive approval from the TPP for the study of new medications and the appropriate local ethics committee, receive signed informed consent from subjects taking part and be undertaken in accordance with the "declaration of Helsinki" and Canadian MRC guidelines concerning human investigation. Methacholine is the recommended substance for challenging the subjects. Although histamine has also been used it is not recommended since the potential for damaging the subjects lungs is too great.

K. References

APPENDIX 3

DRUG WASHOUT TIMES

Recommended drug washout periods.

Subjects are permitted to take their current medications for asthma.

However, they must withhold the following preparations for the indicated period before each study day:

- Inhaled β₂ agonist at least 8 hours
- Inhaled long-acting β₂-agonist at least 48 hours*
- Oral β₂-agonist at least 12 hours
- Inhaled cromoglycate and nedocromil at least 48 hours
- Xanthines a) taken 2 times daily at least 24 hours
 b) taken daily at least 48 hours
- Aspirin and non-steroid antiinflammatory drugs at least 48 hours
- Anticholinergic at least 12 hours
- Antihistamines at least 96 hours
 except for astemizole at least 6 weeks
- Antileukotreines at least 48 hours

*or longer if the dose has been demonstrated to have a longer effect
APPENDIX 4.

STATISTICAL ANALYSIS

Relative potency will be estimated from a 4 point parallel line assay (2 formulations at 2 doses) within a 4 sequence, 4 period crossover design. Each subject will receive 4 treatments consisting of 2 formulations, the test (T) and the standard (S), each at 2 dose levels (1 actuation and 2 actuations). These 4 treatments are designated as S_1, S_2, T_1 and T_2. The sequence of the 4 treatments will be determined by randomly assigning each subject to one of the four sequences of a serially balanced crossover design (Williams Design) such as:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S_1</td>
<td>T_2</td>
<td>S_2</td>
<td>T_1</td>
</tr>
<tr>
<td>2</td>
<td>S_2</td>
<td>S_1</td>
<td>T_1</td>
<td>T_2</td>
</tr>
<tr>
<td>3</td>
<td>T_1</td>
<td>S_2</td>
<td>T_2</td>
<td>S_1</td>
</tr>
<tr>
<td>4</td>
<td>T_2</td>
<td>T_1</td>
<td>S_1</td>
<td>S_2</td>
</tr>
</tbody>
</table>
Statistical analysis of the data should include an analysis of variance (ANOVA) associated with the statistical model containing the factors: sequence, subject(sequence) nesting, formulation, dose, formulation * dose interaction and subject(sequence) * dose interaction

For example, the model to be used for initial testing is:

\[y_{ijkl} = \mu + seq_i + subj(seq)_j + [form_l + \beta x + form_l*\beta x] + {subj(seq)*\beta x}_{ij} + \varepsilon_{ijkl} \]

\(i= 1,2,3,4; j= 1,2,...,n; k= 1,2,3,4; \) and \(l= s,t \) (s= standard, t= test) and

\(\mu \) is the overall mean,

\(seq_i \) is the \(i^{th} \) sequence effect,

\(subj(seq)_j \) is the random effect of the \(j^{th} \) subject nested within the \(i^{th} \) sequence,

\(form_l \) is the overall \(l^{th} \) formulation effect,

\(\beta \) is the overall slope parameter associated with the continuous variable \(x \)

\(x \) is log(dose),

\({subj(seq)*\beta x}_{ij} \) is the random effect of the \(ij^{th} \) slope associated with the \(j^{th} \) subject (within the \(i^{th} \) sequence) (i.e., this fits a separate slope for each subject),

\(\varepsilon_{ijkl} \) is the random residual effect.
From the above model, estimates of dose effect for each subject can be obtained and testing their significance provides a preliminary screening for non-responders, i.e., a subject with a non-significant dose effect should be investigated as a potential non-responder.

From the ANOVA the validity of the model must be examined by testing the effects in the following table.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Result for model validity</th>
<th>Variance components involved in testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence</td>
<td>nonsignificant</td>
<td>subject(sequence)</td>
</tr>
<tr>
<td>dose*formulation interaction</td>
<td>nonsignificant</td>
<td>residual</td>
</tr>
<tr>
<td>dose</td>
<td>significant</td>
<td>subject(sequence)*dose</td>
</tr>
</tbody>
</table>

Log(relative potency) can be estimated from the model,

\[y_{ijkl} = \mu + seq_i + subj(seq)_j + [form_l + \beta x] + \epsilon_{ijkl}, \]

as \[R = (form_t - form_s)/b, \]

where

\(R \) is the estimate of \(\log(\text{relative potency}) \),

\(form_t \) is the estimated overall form effect due to the test formulation
form_s is the estimated overall form effect due to the standard formulation
b is the estimate of the overall common slope \(\beta \)

The 90% confidence interval for log(relative potency) is:

\[
C.I(\log(\rho)) = \left[\frac{R - g \frac{v_{12}}{v_{22}} + (t/b) \left\{ v_{11} - 2Rv_{12} + R^2v_{22} - g \left(v_{11} - v_{12}^2/v_{22} \right) \right\}^{1/2}}{1 - g} \right] / (1 - g),
\]

where,

\[g = \frac{t^2v_{22}}{b^2} \]

\(v_{11} \) is the variance of \((form_t - form_s)\)

\(v_{12} \) is the covariance of \((form_t - form_s)\) and \(b \)

\(v_{22} \) is the variance of \(b \)

\(t \) is the 95th percentile of the t distribution.

The estimate and confidence interval for relative potency (\(\rho \)) is obtained by transforming back into the original dose units. The resulting confidence interval must be entirely contained within the interval (0.80, 1.25) in order to establish equivalence.