1987
Help on accessing alternative formats, such as Portable Document Format (PDF), Microsoft Word and PowerPoint (PPT) files, can be obtained in the alternate format help section.
The maximum acceptable concentration (MAC) for diuron in drinking water is 0.15 mg/L (150 mg/L).
Diuron is a substituted urea-based herbicide used in Canada in 1986 in moderately low quantities (in the range 10 000 to 50 000 kg). Footnote 11 It is employed principally for the control of vegetation in non-crop areas, including irrigation and drainage ditches. Footnote 1 Diuron is a non-ionic compound with moderate water solubility of 22 to 42 mg/L at 20ºC. Its hydrolysis rate is negligible at neutral pH but increases under strongly acidic or alkaline conditions. Footnote 22 It is stable to oxidation and breakdown, persisting in soils for a full season or longer. Footnote 33 It has a log octanol-water partition coefficient of 2.6, which is considered low to moderate. It is adsorbed to soils to some degree, with a moderate soil-water partition coefficient of 485. Footnote 44 The U.S. Environmental Protection Agency has ranked diuron fairly high -- as a Priority B chemical -- with respect to potential for groundwater contamination, Footnote 55 and it also rates highly in Agriculture Canada's ranking of potential leaching agents. Footnote 66
Diuron has not often been included in Canadian water monitoring surveys; it has been detected once in a survey of 15 private wells in Ontario. Footnote 77 In the United States, diuron was detected in 0.03% of more than 900 groundwater samples. It was found in the low parts per billion range (2 to 3 mg/L) in California wells as a result of agricultural practices. Footnote 88 The theoretical maximum dietary intake of diuron for an adult Canadian would be about 0.48 mg/d, or 0.007 mg/kg bw per day, assuming that every crop for which it is registered contained it at the maximum residue level (MRL). Footnote 99 However, its use pattern indicates that it is seldom used on crops, especially wheat and potatoes, which contribute 70% of the theoretical daily intake. Footnote 1010 No actual residue levels in foods are available, as diuron was not included in total diet surveys in either Canada or the United States.
Diuron may be monitored in water by extraction into hexane, hydrolysis to the aniline derivative, quantification by gas/liquid chromatography and Hall conductivity detection. The detection limit using this method is 0.1 mg/L. Footnote 1111 Granular activated carbon and powdered activated carbon are effective in removing up to 90% of diuron from drinking water. Footnote 1212
Diuron is absorbed from the gastrointestinal and respiratory systems. In humans, it is metabolized within hours by hydroxylation and N-dealkylation, then excreted via the urine. Footnote 1313 In rats and dogs, one-sixth to one-half the total eliminated was found in the faeces. Footnote 1414 Following ingestion of diuron for nine months to two years by rats and dogs, little storage was observed in any tissue; the highest levels were seen in liver and kidney. Footnote 1414
Diuron is of low acute toxicity. Juveniles and animals on protein-deficient diets are more susceptible than adults to the toxic effects of diuron, based on LD50 results. Footnote 1313 Ingestion by a woman of a single dose of diuron at 38 mg/kg bw had no apparent effect. Footnote 1313 In animals, the principal toxic effects of chronic ingestion of diuron are weight loss and abnormalities in blood, liver and spleen. Footnote 1313
Two chronic feeding studies have been conducted with diuron, which was administered in the diet for two years to groups of two male and three female beagle dogs at dose levels corresponding to 0, 0.625, 3.125, 6.25 or 31.25 mg/kg bw per day, and to 35 rats of each sex at dose levels corresponding to 0, 1.25, 6.25, 12.5 or 125 mg/kg bw per day.Footnote 8,Footnote 13,Footnote 14 At 125 ppm (3.125 mg/kg bw in dogs and 6.25 mg/kg bw in rats), traces of abnormal blood pigments were observed in a few animals but were not statistically significant. At 250 ppm and above (6.25 mg/kg bw in dogs and 12.5 mg/kg bw in rats), haematological alterations, weight loss, haemosiderosis of the liver and erythroid hyperplasia were observed. The no-observed-adverse-effect level (NOAEL) was 125 ppm, or 3.125 mg/kg bw in dogs and 6.25 mg/kg bw in rats. Although there was no evidence of carcinogenicity in these experiments, no firm conclusions can be drawn because the studies had methodological flaws.
Diuron was not mutagenic in most microbial tests with or without metabolic activation. Footnote 1515 One positive result was reported, in Salmonella typhimurium, with metabolic activation. Footnote 1616 Diuron was negative in two in vitro mammalian test systems, for forward gene mutations in Chinese hamster ovary cells and for unscheduled DNA synthesis in rat hepatocytes. Footnote 1717 However, clastogenic effects were observed in an in vivo test on rats. Footnote 1717
Reproduction was not affected in a three-generation rat study with dietary levels equivalent to 6 mg/kg bw per day; however, this dose was slightly foetotoxic, causing reduction of body weights in the F2 and F3 litters.Footnote 88,Footnote 13 Diuron was not teratogentic but was foetotoxic in rats receiving 250 mg/kg bw per day, with lowered foetal weights and minor rib and bone anomalies observed. The same effects were observed at 125 mg/kg bw per day but were not statistically significant. Footnote 18 The lowest-observed-adverse-effect level (LOAEL) was therefore 125 mg/kg bw per day.
Based on evaluations by the Food Directorate of the Department of National Health and Welfare, Footnote 1919 the acceptable daily intake (ADI) for diuron is derived as follows:

where:
The maximum acceptable concentration (MAC) is derived from the ADI as follows:

where:
Environment Canada/Agriculture Canada. Pesticide Registrant Survey, 1987 report. Commercial Chemicals Branch, Conservation and Protection, Environment Canada, Ottawa (1987).
Spencer, E.Y. Guide to chemicals used in crop protection. 7th edition. Research Branch, Agriculture Canada, Ottawa (1982).
Ashton, F.M. Persistence and biodegradation of herbicides. In: Biodegradation of pesticides. F. Matsumura and C.R. Krishna Murti (eds.). Plenum Press, New York, NY. p. 117 (1982).
Hamaker, J.W. The interpretation of soil leaching experiments. In: Environmental dynamics of pesticides. R. Haque and V.H. Freed (eds.). Plenum Press, New York, NY. p. 115 (1975).
U.S. Environmental Protection Agency. EPA draft final list of recommendations for chemicals in the National Survey for Pesticides in Groundwater. Chem. Regul. Rep., 9(34): 988 (1985).
Agriculture Canada. Pesticide priority scheme for water monitoring program. Unpublished report, Pesticide Directorate (1986). (Published as Backgrounder, No. 89-01, Issues, Planning and Priorities Division, 1989.)
Hiebsch, S.C. The occurrence of thirty-five pesticides in Canadian drinking water and surface water. Unpublished report prepared for Environmental Health Directorate, Department of National Health and Welfare, January (1988).
U.S. Environmental Protection Agency. Diuron health advisory. Office of Drinking Water (1987).
Department of National Health and Welfare. National pesticide residue limits in foods. Chemical Evaluation Division, Food Directorate, Ottawa (1986).
Department of National Health and Welfare. Food consumption patterns report. Nutrition Canada, Bureau of Nutritional Sciences, Health Protection Branch (1977).
Frank, R., Clegg, B.S., Ripley, B.D. and Braun, H.E. Investigations of pesticide contamination in rural wells, 1979-1984, Ontario, Canada. Arch. Environ. Contam. Toxicol., 16: 9 (1987).
El-Dib, M.A. and Aly, O.A. Removal of phenylamide pesticides from drinking water. II. Adsorption on powdered carbon. Water Res., 11:617 (1977).
Hayes, W.J., Jr. Pesticides studied in man. Williams and Wilkins,Baltimore, MD (1982).
Hodge, H.C., Downs, W.L., Panner, B., Smith, D., Maynard, E., Clayton, J., Jr. and Rhodes, R. Oral toxicity and metabolism of diuron in rats and dogs. Food Cosmet. Toxicol., 5: 513 (1967).
Grutman, G., Schoofs, L., Lontie, J.-F. and van Larebeke, N. The mutagenicity in prokaryotes of herbicides. Residue Rev., 91: 1 (1984).
Seiler, J.P. Herbicidal phenylalkylureas as possible mutagens. I. Mutagenicity tests with some urea herbicides. Mutat. Res., 58: 353 (1978).
Dupont de Nemours & Co. Mutagenicity studies with diuron. Salmonella test, No. HLR 471-84 (7185); CHO/HGPRT forward gene mutation assay, H.R. No. 282-85 (06/28/85); unscheduled DNA synthesis test in primary rat hepatocytes, HLR No. 349-85; and in vivo cytogenetic test, No. 36685 (1985), cited in reference 8.
Khera, K.S., Whalen, C., Trivett, G. and Ongers, G. Teratogenicity studies on pesticide formulations of dimethoate, diuron, and lindane in rats. Bull. Environ. Contam. Toxicol., 22: 522 (1979).
Department of National Health and Welfare. Memorandum from D. Clegg, Food Directorate, to P. Toft, Environmental Health Directorate, August 6 (1986).