Health Canada
Symbol of the Government of Canada
Environmental and Workplace Health

Selenium

April 1979
(Updated December 1992)

Help on accessing alternative formats, such as Portable Document Format (PDF), Microsoft Word and PowerPoint (PPT) files, can be obtained in the alternate format help section.

Table of Contents

Selenium

A maximum acceptable concentration of 0.01 mg/L (10 µg/L) for selenium in drinking water has been established on the basis of health considerations. Food is the main source of intake of selenium for individuals who are not occupationally exposed; thus, toxic effects have most often been associated with food intake. A safe and adequate range of selenium intake of 0.05 to 0.2 mg per person per day has been recommended for adults, with correspondingly lower ranges for infants and children. Drinking water containing selenium at the maximum acceptable concentration would be the source of between 10 and 25 percent of total selenium intake; the maximum acceptable concentration is considered to provide a reasonable factor of safety from adverse effects of selenium.

General

In general, selenium is present in the environment in elemental form or in the form of selenide (Se2-), selenate (SeO42-), or selenite (SeO3 2-). It is widely distributed in the Earth's crust at concentrations averaging 0.09 mg/kg and is found in trace quantities in most plant and animal tissues.Footnote 1

Concentrations of selenium in minerals are too low to allow its extraction alone to be economically feasible. Selenium is produced in Canada from copper refinery slimes and from flue dusts from copper smelters. A significant amount of selenium is also re-refined in Canada from xerographic scrap and other selenium scrap imported from the United States and other countries and then re-exported as the pure product. The production of selenium in all forms from Canadian refineries in 1983 was 352 tonnes; domestic consumption was 11.8 tonnes. Canada exports most of its production to the United States and Britain. Canada, the United States, and Japan are the world's major producers. Selenium is used in the manufacture of pigmented glass, stainless steel, electronic components (semi-conductors, photoelectric cells), explosives, batteries, animal and poultry feeds, pigments, fungicides, and certain medicines, and in xerography.Footnote 2

Occurrence

All of the common oxidation states of selenium are found in the environment: selenides (-2), selenium (0), selenites (+4), and selenates (+6). The identity and proportions of the various oxidation-state species in soils (the primary source of environmentally distributed selenium) depend on redox-potential conditions --lower oxidation states predominate in poorly aerated, acidic soils, and the higher oxidation states are favoured in alkaline, well-aerated soils. Both selenites and selenates are taken up by plants (the major point of entry of selenium into the human food chain), where they are converted to protein-bound selenomethionine, soluble inorganic forms, several free amino acids, and volatile organoselenium compounds. The selenates, however, are considered the most readily available to plants. The elemental form of selenium has appreciable volatility and hence will enter the atmospheric environmental compartment, as will selenium dioxide (for example, in emissions from smelting operations and coal burning) and volatile organoselenium compounds produced by plants. Selenium occurs in natural waters in trace amounts as a result of geochemical processes, such as weathering of rocks and erosion of soils, and is usually present in water as selenate or selenite; however, the elemental form may be carried in suspension.Footnote 3,Footnote 4

The concentration of selenium measured in Canadian surface water ranges from non-detectable (<0.1 × 10-4 mg/L) to 4 × 10-3 mg/L.Footnote 5 Studies of selenium in rivers in the Great Lakes basin indicate that concentrations are lower in lakes and rivers geographically isolated from large urban centres, and this has been interpreted as an indication that atmospheric pollution may contribute substantially to selenium contamination of natural waters.Footnote 6 A mean selenium concentration of 2 × 10-4 mg/L has been recorded for natural waters in the United States.Footnote 7

A 1982 survey of drinking water supplies from 122 municipalities across Canada (representing 36 percent of the Canadian population) showed that selenium was present at or below the detection limit of 5 × 10-4 mg/L (raw, treated, and distributed water samples were analysed).Footnote 8 Higher selenium concentrations may, however, be encountered in some Canadian drinking water. An earlier (1975) study of 120 Manitoba drinking water supplies found that, whereas 93 percent had concentrations below 5 × 10-3 mg/L (the detection limit), 7 percent had concentrations between 0.005 and 0.01 mg/L.Footnote 9

There is no information available on levels of selenium in the air of Canadian communities. In the United States, it has been estimated that the average selenium concentration in air is 10-6 mg/m3.Footnote 10 In urban centres, levels are somewhat higher due to stack emissions from incinerators. Bennett has estimated that a representative concentration of selenium in urban atmospheres would be 3 × 10-6 mg/m3 (range, 10-8 to 3 × 10-5 mg/m3), whereas that in rural atmospheres would be 1.3 × 10-6 mg/m3 (range, 10-8 to 3 × 10-6 mg/m3).Footnote 11

Analysis of selenium in Canadian foods has revealed that concentrations in milk range from 5 × 10-6 to 6 × 10-5 mg/g and those in cereals range from 8 × 10-5 to 1.3 × 10-3 mg/g; concentrations average 3 × 10-5 mg/g in meat and 5 × 10-5 mg/g in vegetables.Footnote 12 Concentrations between 10-5 and 8 × 10-5 mg/g have been recorded in fish from Lake Erie and Lake Ontario;Footnote 6 an average concentration of 3.3 × 10-3 mg/g in freshwater fish from central Canada has been recorded.Footnote 13 The marked variation in the selenium content of some foods is due largely to the variable distribution of selenium in soils. Cooking or food processing has little effect on the selenium content of foods.Footnote 14

Canadian Exposure

Based on analysis of prepared foods, the daily intake of selenium in typical Canadian diets has been estimated to be 0.191 mg in Winnipeg, 0.224 mg in Halifax, and 0.113 mg and 0.149 mg in Toronto.Footnote 15 Somewhat lower selenium intakes were measured in the diets of 84 Canadian women; a mean value of 0.077 mg/day was found, with a range of 0.031 to 0.166 mg/day.Footnote 16 These values compare with the results from total-diet studies in the United States, which showed (for the year 1981/82, the latest period for which figures are available) that the average adult intake was 0.139 mg/day,Footnote 17 whereas those for toddlers and infants were 0.054 and 0.022 mg/day, respectively.Footnote 18

Assuming individual daily water consumption to be 1.5 LFootnote 19 and the selenium content of Canadian drinking water measured by Subramanian and Méranger to be less than 5 ´ 10-4 mg/L, then the average daily intake from drinking water would be less than 10-3 mg per person. Compared with food, therefore, drinking water makes a negligible contribution to total selenium intake. Even more negligible is the contribution to total daily intake made by selenium in air. If Bennett's estimates of 3 × 10-6 mg/m3 for selenium in urban air and 1.3 × 10-6 mg/m3 for selenium in rural airFootnote 11 are assumed to apply in Canada, and if the daily respiratory volume is assumed to be 20 m3, then the daily intake of selenium from the atmosphere would be 6 × 10-5 and 2.6 × 10-5 mg for urban and rural populations, respectively.

These data suggest that the total daily intake of selenium from food, air, and water for Canadian adults would be in the range of 0.05 to 0.2 mg; children would have lower intakes. More than 98 percent of these intakes would come from food.

Treatment TechnologyFootnote 20

Laboratory experiments and pilot-plant studies have shown that alum and ferric sulphate coagulation and lime softening are ineffective in removing selenates (Se6+) from water and are only moderately successful in removing selenites (Se4+). Of the two coagulants, ferric sulphate is the more effective in removing selenites. Removal efficiency is, however, very dependent on pH; below pH 5.5, 85 percent removal can be achieved, but this drops to 15 percent at pH 9.2. Alum coagulation removes no more than 20 to 30 percent over this pH range. Removal of selenites by lime softening increases with increasing pH, but the maximum that can be achieved is only 45 percent (and only at a pH of 11.5).

Very limited laboratory tests have demonstrated that both ion exchange and reverse osmosis can be very effective in removing selenates and selenites from water. Better than 97% removal was obtained in solutions containing about 0.1 mg/L of selenium (as either Se6+ or Se4+).

Essentiality

Following earlier conclusions that selenium is an essential element in animal nutrition,Footnote 21,Footnote 22 there is now consensus that it is also an essential trace element in the human diet.Footnote 11,Footnote 23-Footnote 25 The most persuasive evidence for essentiality in humans comes from the association of Keshan disease (a juvenile cardiomyopathy endemic in certain areas of China) with selenium deficiency in the diet.Footnote 26,Footnote 27 This disease is limited to those areas of China where, because the selenium content of soils is low, dietary intakes of selenium are less than 0.03 mg/day. The condition is characterized by heart enlargement, abnormal electrocardiograms, cardiogenic shock, and congestive heart failure. The disease is mainly seen in rural areas and occurs predominately in agricultural inhabitants (peasants and their families), the most susceptible being children from 2 to 15 years of age and women of child-bearing age. It was found that the administration of sodium selenite (0.5 mg weekly for 1 to 5 year olds and 1.0 mg weekly for 6 to 9 year olds) essentially eliminated the disease in a previously afflicted geographical area. A note of caution has, however, been sounded by Guanquing, with the suggestion that Keshan disease may result from a viral infection, the effects of which are exacerbated by selenium deficiency or by a combination of low selenium and low protein intakes.Footnote 28 There have also been reports of conditions in individuals that have responded to the administration of supplementary selenium: relief of symptoms of muscular discomfort in a patient on long-term total parenteral nutrition in New ZealandFootnote 29 and the treatment of cardiomyopathy in a selenium-deficient patient in the United States.Footnote 30

Selenium has been shown in in vitro culture studies to increase the growth of human fibroblasts,Footnote 31 and it occurs in the enzyme glutathione peroxidase isolated from human erythrocytes.Footnote 32 Glutathione peroxidase appears to interact with vitamin E in protecting the cell membrane against oxidative destruction,Footnote 16 and Thompson and Robinson have suggested that it is for this reason that selenium is required for the clonal growth of human fibroblasts.Footnote 33

Ingestion

Barbezat et al. have pointed out in a recent review that absorption of selenium has not been studied extensively in man.Footnote 34 Much of the work has been carried out in their own laboratory and involved New Zealand residents who, as a national group, tend to have low intake and low body content of selenium. These researchers found the actual extent of selenium absorption depended on the nature of the selenium-containing matrix: selenomethionine (a naturally occurring selenium-containing amino acid) was more completely absorbed than inorganic selenites (species more likely to be found in drinking water than organoselenium compounds) -- 80 to 90 percent and 60 to 70 percent, respectively -- with food selenium (which comprises both organic and inorganic selenium compounds) intermediate between the two. Coupled with this ready absorption of selenium is an endogenous excretion, and thus the apparent uptake appears lower (about 75 percent for selenomethionine and between 46 and 61 percent for selenite). Similar results, also reviewed by Barbezat et al., were obtained in U.S. subjectsFootnote 35-Footnote 37 and in Germans,Footnote 38 all individuals who normally had higher natural intakes of selenium in their diets than the New Zealanders.

Sunde has postulated that selenium is metabolized by a combination of reduction and methylation processes via an intermediate, inorganic selenide compound (HSe-).Footnote 39 Selenium is excreted by mono-gastric mammals (including man) mainly in faeces and urine, with a minor route through the lungs (as dimethylselenide); the relative importance of these three routes depends on the nature of the selenium compound being ingested and on the magnitude and duration of the dose. (For a review of excretory pathways, see reference.Footnote 40 The major urinary metabolite of selenium is the trimethyl-selenonium ion. The amount of selenium excreted in urine is loosely related to the amount of selenium in the diet.

It is difficult to draw conclusions about quantities of selenium that are toxic, because of a number of complicating factors. The quantity and nature of protein in the dietFootnote 34,Footnote 35 and the presence of vitamin EFootnote 41- Footnote 44modify the toxicity of selenium. Health effects are also dependent upon the chemical form of selenium; elemental selenium is inert and generally considered non-toxic. As well, metabolic interrelationships exist between selenium and such elements as arsenic,Footnote 45-Footnote 49 cadmium,Footnote 50,Footnote 51 mercury,Footnote 50,Footnote 52-Footnote 56 lead,Footnote 57,Footnote 58 silverFootnote 56,Footnote 59-Footnote 63 and thallium;Footnote 64,Footnote 65 in some cases the toxicities of selenium and these other elements are antagonistic, whereas in others they are synergistic.Footnote 21 The biochemical bases for these interactions are largely unknown. Nonetheless, estimates of 0.5Footnote 66 and 0.7Footnote 34 mg/day have been made for the minimum daily intake of selenium likely to give rise to toxic effects in humans.

Most toxic effects of selenium appear to be associated with the consumption of selenium at high concentrations in food rather than in drinking water, and there is some evidence that chronic selenium toxicity of dietary origin occurs in man. High daily intake of selenium in the diet of humans (0.1 to 0.2 mg/kg body weight) has been correlated with jaundice, chloasma, vertigo, chronic gastrointestinal disease, dermatitis, nail changes, lassitude, and fatigue.Footnote 67,Footnote 68 Consumption of drinking water with a selenium concentration of 9 mg/L for three months resulted in loss of hair, weakened nails, and listlessness in several individuals.Footnote 69 More recently, a group of Venezuelan children living in seleniferous areas was compared with a control group.Footnote 70 The selenium levels in blood of children in seleniferous areas was more than double those of the control group, but the only signs to correlate with blood or urinary selenium were the somewhat poorly defined clinical findings of nausea and pathological nails.

The human symptoms of selenosis described above are similar, in general terms, to those observed in domestic animals suffering chronic selenosis from grazing on land with highly seleniferous soil.Footnote 21 In laboratory animals, ingestion of drinking water with a selenite concentration of 0.01 mg/L results in decreased liver function in rabbits.Footnote 71 This result is somewhat questionable, because the selenium content of the diet was not quantified, and the results from the liver function test may not have been reliable. In another study, a small reduction in the rate of weight gain was noted when 2 to 3 mg selenium per litre as selenite and selenate was administered in drinking water for six weeks to rats on corn-based or rye-based diets.Footnote 72 A similar study had previously shown that toxic symptoms in rats occurred from ingestion of selenium (as selenite) at a concentration of 3 mg/L in drinking water, but not with ingestion of similar levels of selenate.Footnote 73

Other Routes

Very little quantitative information is available on the absorption of selenium compounds through the lungs or skin. Comparatively little absorption occurs after local application of selenium sulphide to normal skin. The compound, which is contained in some anti-dandruff shampoos, is absorbed more readily by an inflamed or damaged epithelium.Footnote 74 Industrial exposure to elemental selenium, hydrogen selenide, or selenium oxychloride through the skin or lungs has resulted in pallor, nervousness, depression, dermatitis, gastrointestinal disturbances, and garlic odour of the breath.Footnote 21

Carcinogenicity

The carcinogenic potential of selenium has been widely investigated in both laboratory and epidemiological studies, and there is much conflicting information on the subject. (See, for example, the reviews and assessments by the International Agency for Research on Cancer,Footnote 75 Schrauzer,Footnote 76 the U.S. National Academy of Sciences,Footnote 21 the U.S. Environmental Protection Agency,Footnote 40 and Diplock.Footnote 77 The consensus is that the available animal data are insufficient to allow an evaluation of the carcinogenicity of selenium compounds, and that available human data provide no suggestion that selenium is carcinogenic in man. There is, however, evidence that selenium is mutagenic at the molecular and cellular levels in vitro.Footnote 78,Footnote 79 Selenium has also been shown to be teratogenic in a number of avian and mammalian species (a subject extensively reviewed by the U.S. National Academy of SciencesFootnote 21, and there have been suggestions that selenium may also be a teratogen in humans.Footnote 80,Footnote 81

Data from epidemiological and laboratory studies suggest that selenium may have anti-carcinogenic properties.Footnote 21,Footnote 75,Footnote 82,Footnote 83 There is some indication that the incidence of human cancer mortality is inversely related to the amounts of selenium in the environment, to dietary intake, and to levels of selenium in the blood.Footnote 83-Footnote 85 These studies should be viewed with some caution; for example, the International Agency for Research on Cancer has concluded "that the evidence for a negative correlation between regional cancer death rates and selenium is not convincing",Footnote 75 and Robinson has stated, "We are convinced from our New Zealand studies that cancer is not caused by selenium deficiency per se, but that the low selenium status of our patients was more a consequence of the illness".Footnote 23 Selenium has, however, been shown to have inhibitory effects on chemically induced carcinogenesis in rodent species.Footnote 21,Footnote 75

Cardiovascular Disease

There are some epidemiological data that suggest a connection between low selenium intakes or blood levels and cardiovascular disease. Shamberger et al. have reported that the death rate from atherosclerotic heart disease is lower in areas with selenium-rich soil.Footnote 86 A case-control epidemiological study in Finland (a geographical area with generally low levels of soil selenium) has shown that the relative risks of coronary heart disease death, cardiovascular death, and fatal and non-fatal myocardial infarction were all more than twice as high (p < 0.01) among individuals having serum selenium concentrations below 0.045 mg/L.Footnote 87 A recent study of dietary intake of selenium in three rural communities in northern Italy that have a high death rate for coronary heart disease showed that the average adult intake of selenium was 0.043 mg/day, a value lower than the 0.05 to 0.2 mg/day considered adequate for healthy adults.Footnote 88

Acceptable Daily Intake

In the last 10 years or so, considerable advances have been made regarding the role selenium plays in human health, but the picture is still far from clear.Footnote 11,Footnote 23Footnote 24 Footnote 77 Robinson, for example, has pointed out that "the margin between deficiency and toxicity seems narrower for Se than for some other trace elements" and adds, "to serve as a warning against marginal or excessive intake of Se, the U.S. Food and Nutrition Board have recommended for the first time a range of adequate and safe intakes".Footnote 23 The safe and adequate range established by this board has been set at 0.05 to 0.2 mg per person per day for adults, with correspondingly lower ranges for infants and children.Footnote 89 The dietary requirement below which adverse health effects may occur has been variously and tentatively estimated to be 0.02 to 0.12 mg/day,Footnote 21,Footnote 90 and the minimum toxic selenium intake has been variously estimated at 0.5Footnote 66 or 0.7Footnote 40 mg/day.

Rationale

  1. It is now reasonably well established that selenium is an essential element in human nutrition. It is unclear whether or not selenium can be considered a carcinogen. Studies have indicated that selenium might have anti-carcinogenic properties. Ingestion of large amounts of selenium has been correlated with a variety of clinical disorders in humans, as has ingestion of insufficient quantities of selenium.
  2. Food is the main source of intake of selenium for humans who are not occupationally exposed, and toxic effects are most often associated with its intake in food. There is little information available on the toxicity of selenium in drinking water. The minimum toxic intake level has been identified for adults as 0.5 to 0.7 mg/day, and daily intakes of less than 0.02 or 0.03 mg may also be linked to adverse health effects. The U.S. National Academy of Sciences has recommended a safe and adequate range of 0.05 to 0.2 mg per person per day for adults, with correspondingly lower ranges for infants and children.
  3. The maximum acceptable concentration of selenium in drinking water is 0.01 mg/L. If selenium is present at this level, drinking water would be the source of between 10 and 25 percent of total selenium intake.

References

Footnotes

Footnote 1

Schamberger, R.J. Selenium. In: Biochemistry of the essential ultratrace elements. E. Frieden (ed.). Plenum Press, New York, NY. pp. 201-237 (1984).

Return to footnote 1 referrer

Footnote 2

Cranston, D.A. Selenium and tellurium. In: Canadian minerals yearbook 1983-1984: review and outlook. Catalogue No. M38-5/33E, Mineral Resources Branch, Energy, Mines and Resources Canada, Ottawa (1985).

Return to footnote 2 referrer

Footnote 3

Merian, E. Introduction on environmental chemistry and global cycles of chromium, nickel, cobalt, beryllium, arsenic, cadmium and selenium, and their derivatives. Toxicol. Environ. Chem., 8: 9 (1984).

Return to footnote 3 referrer

Footnote 4

Newland, L.W. Arsenic, beryllium, selenium and vanadium. In: Handbook of environmental chemistry: anthropogenic compounds. Vol. 3. Part B. O. Hutzinger (ed.) (1982), cited in reference 3.

Return to footnote 4 referrer

Footnote 5

National Water Quality Data Bank (NAQUADAT). Draft document (unpublished), Water Quality Branch, Inland Waters Directorate, Environment Canada, Ottawa (1985).

Return to footnote 5 referrer

Footnote 6

Traversy, W.J., Goulden, P.D., Sheikh, Y.M. and Leacock, J.F. Levels of arsenic and selenium in the Great Lakes region. Scientific Series No. 58, Water Quality Branch, Inland Waters Directorate, Environment Canada, Ottawa (1975).

Return to footnote 6 referrer

Footnote 7

Lakin, H.W. Selenium in our environment. In: Trace elements in the environment. E.L. Kothny (ed.). American Chemical Society, Washington, DC. p. 96 (1973).

Return to footnote 7 referrer

Footnote 8

Subramanian, K.S. and Méranger, J.C. A survey of sodium, potassium, barium, arsenic, and selenium in Canadian drinking water supplies. At. Spectrosc., 5: 34 (1984).

Return to footnote 8 referrer

Footnote 9

Manitoba Department of Mines, Resources and Environmental Management. Unpublished data. Environmental Management Division.

Return to footnote 9 referrer

Footnote 10

Hashimoto, Y. and Winchester, J.W. Selenium in the atmosphere. Environ. Sci. Technol., 1: 338 (1967).

Return to footnote 10 referrer

Footnote 11

Bennett, B.G. Exposure commitment assessments of environmental pollutants. Vol. 2. (Summary exposure assessments for PCBs, selenium, chromium.) Monitoring and Assessment Research Centre (MARC), Chelsea College, University of London, UK (1982).

Return to footnote 11 referrer

Footnote 12

Arthur, D. Selenium content of Canadian foods. Can. Inst. Food Sci. Technol. J., 5: 165 (1972).

Return to footnote 12 referrer

Footnote 13

Beal, A.R. A study of selenium levels in freshwater fishes of Canada's central region. Technical Series No. CEN/T-74-6, Department of the Environment (1974).

Return to footnote 13 referrer

Footnote 14

Higgs, D.J., Morris, V.C. and Levander, O.A. Effect of cooking on selenium content of foods. J. Agric. Food Chem., 20: 678 (1972).

Return to footnote 14 referrer

Footnote 15

Thompson, J.N., Erodody, P. and Smith, D.C. The selenium content of food consumed by Canadians. J. Nutr. 105: 274 (1975).

Return to footnote 15 referrer

Footnote 16

Gibson, R.S. and Scythes, C.A. Chromium, selenium, and other trace element intakes of a selected sample of Canadian premenopausal women. Biol. Trace Elem. Res., 6: 105 (1984).

Return to footnote 16 referrer

Footnote 17

Gartrell, M.J., Craun, J.C., Podrebarac, D.S. and Gunderson, E.L. Pesticides, selected elements, and other chemicals in adult total diet samples, October 1980 - March 1982. J. Assoc. Off. Anal. Chem., 69: 146 (1986).

Return to footnote 17 referrer

Footnote 18

Gartrell, M.J., Craun, J.C., Podrebarac, P.S. and Gunderson, E.L. Pesticides, selected elements, and other chemicals in infant and toddler total diet samples, October 1980 - March 1982. J. Assoc. Off. Anal. Chem., 69: 123 (1986).

Return to footnote 18 referrer

Footnote 19

Armstrong, V.C., Holliday, M.G. and Schrecker, T.F. Tap water consumption in Canada. Environmental Health Directorate Report 82-EHD-80, Department of National Health and Welfare, Ottawa (1981).

Return to footnote 19 referrer

Footnote 20

U.S. Environmental Protection Agency. Manual of treatment techniques for meeting the interim primary drinking water regulations. Report No. EPA-600/8-77-005, Cincinnati, OH, May. pp. 29-31 (1977).

Return to footnote 20 referrer

Footnote 21

National Academy of Sciences. Medical and biological effects of environmental pollutants: selenium. Washington, DC (1976).

Return to footnote 21 referrer

Footnote 22

Department of National Health and Welfare. Selenium. In: Guidelines for Canadian drinking water quality 1978: supporting documentation. Catalogue No. H48-10/1978-112, Ottawa (1980).

Return to footnote 22 referrer

Footnote 23

Robinson, M.F. Clinical effects of selenium deficiency and excess. In: Clinical, biochemical, and nutritional aspects of trace elements. A.S. Prasad (ed.). Alan R. Liss, New York, NY. pp. 325-343 (1982).

Return to footnote 23 referrer

Footnote 24

Levander, O.A. Selenium: biochemical actions, interactions, and some human health implications. In: Clinical, biochemical, and nutritional aspects of trace elements. A.S. Prasad (ed.). Alan R. Liss, New York, NY. pp. 345-368 (1982).

Return to footnote 24 referrer

Footnote 25

World Health Organization. Selenium. In: Guidelines for drinking-water quality. Ch. 14. Geneva (1984).

Return to footnote 25 referrer

Footnote 26

Chen, X. et al. Studies on the relations of selenium and Keshan disease. Biol. Trace Elem. Res., 2: 91 (1980), cited in references 17, 25, 77.

Return to footnote 26 referrer

Footnote 27

Xu, G.-L., Hong, S.-Y., Song, H.-B. and Xie, J.-K. Keshan disease and selenium deficiency. Nutr. Res., Suppl. I: 187 (1985).

Return to footnote 27 referrer

Footnote 28

Guanquing, H. On the etiology of Keshan disease. Chin. Med. J., 92: 416 (1979).

Return to footnote 28 referrer

Footnote 29

van Rij, A.M., Thompson, C.D., McKenzie, J.M. and Robinson, M.F. Selenium deficiency in total parenteral nutrition. Am. J. Clin. Nutr., 32: 2076 (1979), cited in references 17, 25.

Return to footnote 29 referrer

Footnote 30

Johnson, R.A. et al. An occidental case of cardiomyopathy and selenium deficiency. N. Engl. J. Med., 304: 1210 (1981), cited in reference 17.

Return to footnote 30 referrer

Footnote 31

McKeehan, W.L., Hamilton, W.G. and Ham, R.G. Selenium is an essential trace nutrient for the growth of WI-8 diploid human fibroblasts. Proc. Natl. Acad. Sci. U.S.A., 73: 2023 (1976), cited in reference 25.

Return to footnote 31 referrer

Footnote 32

Auasthi, Y.C., Beutler, E. and Srivastava, S.K. Purification and properties of human erythrocyte glutathione peroxidase. J. Biol. Chem., 250: 5144 (1975), cited in references 17, 25.

Return to footnote 32 referrer

Footnote 33

Thompson, C.D. and Robinson, M.R. Selenium in human health and disease with emphasis on those aspects peculiar to New Zealand. Am. J. Clin. Nutr., 33: 303 (1980), cited in reference 24.

Return to footnote 33 referrer

Footnote 34

Barbezat, G.O. et al. Selenium. In: Absorption and malabsorption of mineral nutrients. N.W. Solomons and I.H. Rosenberg (eds.). Alan R. Liss, New York, NY. pp. 231-258 (1984).

Return to footnote 34 referrer

Footnote 35

Greger, J.L. and Marcus, R.E. Effect of dietary protein, phosphorus, and sulfur amino acids on selenium metabolism of adult males. Ann. Nutr. Metab., 25: 97 (1981).

Return to footnote 35 referrer

Footnote 36

Levander, O.A., Sutherland, B., Morris, V.C. and King, J.C. Selenium balance in young men during selenium depletion and repletion. Am. J. Clin. Nutr., 34: 2662 (1981).

Return to footnote 36 referrer

Footnote 37

Janghorbani, M., Christensen, M.J., Nahapetian, A. and Young, V.R. Selenium metabolism in healthy adults: quantitative aspects using the stable isotope 74SeO32-. Am. J. Clin. Nutr., 35:647 (1982).

Return to footnote 37 referrer

Footnote 38

Heinrich, H.C. et al. Bioavailability of feed iron - (59Fe), vitamin B (60Co) and protein bound selenomethionine - (75Se) in pancreatic exocrine insufficiency due to cystic fibrosis. Klin. Wochenschr., 55: 595 (1977).

Return to footnote 38 referrer

Footnote 39

Sunde, R.A. The biochemistry of selenoproteins. J. Am. Oil Chem. Soc., 61: 1891 (1984)

Return to footnote 39 referrer

Footnote 40

U.S. Environmental Protection Agency. Ambient water quality criteria for selenium. Report No. EPA-440/5-80-070, Criteria and Standards Division, Office of Water Regulations and Standards, Washington, DC (1980)

Return to footnote 40 referrer

Footnote 41

Levander, O.A. and Morris, V.C. Interactions of methionine, vitamin E, and antioxidants in selenium toxicity in the rat. J. Nutr., 100: 1111 (1970)

Return to footnote 41 referrer

Footnote 42

Levander, O.A. Metabolic interrelationships and adaptations in selenium toxicity. Ann. N.Y. Acad. Sci., 192: 181 (1972)

Return to footnote 42 referrer

Footnote 43

van Vleet, J.F., Meyer, K.B. and Olander, H.J. Acute selenium toxicosis induced in baby pigs by parenteral administration of selenium/vitamin E preparations. J. Am. Vet. Med. Assoc., 165: 543 (1974), cited in reference 25

Return to footnote 43 referrer

Footnote 44

Witting, L.A. and Horwitt, M.K. Effects of dietary selenium, methionine, fat level, and tocopherol on rat growth. J. Nutr., 84:351 (1964), cited in reference 25.

Return to footnote 44 referrer

Footnote 45

Levander, O.A. and Bauman, C.A. Selenium metabolism. VI. Effect of arsenic on the excretion of selenium in the bile. Toxicol. Appl. Pharmacol., 9: 106 (1966)

Return to footnote 45 referrer

Footnote 46

Halverson, A.W., Tsay, D.-T., Triebevasser, K.C. and Whitehead, E.I. Development of hemolytic anemia in rats fed selenite. Toxicol. Appl. Pharmacol., 17: 151 (1970)

Return to footnote 46 referrer

Footnote 47

Moxon, A.L., DuBois, K.P. and Potter, R.L. The toxicity of optically inactive d- and l-selenium cystine. J. Pharmacol. Exp. Ther., 72: 184 (1941)

Return to footnote 48 referrer

Footnote 48

Frost, D.V. Recent advances in trace elements: emphasis on interrelationships. In: Proc. of Cornell Nutrition Conference on Feed Manufacture. Cornell University, Ithaca, NY. p. 31 (1967)

Return to footnote 48 referrer

Footnote 49

Obermeyer, B.D., Palmer, I.S., Olson, O.E. and Halverson, A.W. Toxicity of trimethylselenonium chloride in the rat with and without arsenite. Toxicol. Appl. Pharmacol., 20: 135 (1971)

Return to footnote 49 referrer

Footnote 50

Parizek, J. et al. The detoxifying effects of selenium interrelations between compounds of selenium and certain metals. In: Newer trace elements in nutrition. W. Mertz and W.E. Comatzer (eds.). Marcel Dekker, New York, NY. p. 85 (1971)

Return to footnote 50 referrer

Footnote 51

Whanger, P.D., Ridlington, J.W. and Holcomb, C.L. Interactions of zinc and selenium on the binding of cadmium to rat tissue proteins. Ann. N.Y. Acad. Sci., 355: 333 (1980), cited in reference 25

Return to footnote 51 referrer

Footnote 52

Stoewsand, G.S., Bache, C.A. and Lisk, D.J. Dietary selenium protection of methylmercury intoxication of Japanese quails. Bull. Environ. Contam. Toxicol., 11: 152 (1974)

Return to footnote 52 referrer

Footnote 53

Potter, S. and Matrone, G. Effect of selenite on the toxicity of dietary methylmercury and mercuric chloride in the rat. J. Nutr., 104: 638 (1974)

Return to footnote 53 referrer

Footnote 54

Ohi, G. et al. Interaction of dietary methyl-mercury and selenium on accumulation and retention of these substances in rat organs. Toxicol. Appl. Pharmacol., 32: 527 (1975)

Return to footnote 54 referrer

Footnote 55

Ganther, H.E. et al. Selenium: relation to decreased toxicity of methyl-mercury added to diets containing tuna. Science, 175: 1122 (1972)

Return to footnote 55 referrer

Footnote 56

Ganther, H.E. Interactions of vitamin E and selenium with mercury and silver. Ann. N.Y. Acad. Sci., 355: 212 (1980), cited in reference 25

Return to footnote 56 referrer

Footnote 57

Rastogi, S.C., Calusen, J. and Srivastava, K.C. Selenium and lead: mutual detoxifying effects. Toxicology, 6: 377 (1976)

Return to footnote 57 referrer

Footnote 58

Cerklewski, F.L. and Forbes, R.M. Influence of dietary selenium on lead toxicity in the rat. J. Nutr., 106: 778 (1976)

Return to footnote 58 referrer

Footnote 59

Cerklewski, F.L. and Forbes, R.M. Influence of dietary selenium on lead toxicity in the rat. J. Nutr., 106: 778 (1976)

Return to footnote 59 referrer

Footnote 60

Mason, K.E. In: Vitamin E in early life. R.M. Herriot (ed.). Johns Hopkins Press, Baltimore, MD (1953)

Return to footnote 60 referrer

Footnote 61

Diplock, A.T. et al. Vitamin E and stress. 3. The metabolism of D-a-tocopherol in the rat under dietary stress with silver. Br. J. Nutr., 21:115 (1967).

Return to footnote 61 referrer

Footnote 62

Grasso, P. et al. The role of dietary silver in the production of liver necrosis in vitamin E-deficient rats. Exp. Mol. Pathol., 11: 186 (1969)

Return to footnote 62 referrer

Footnote 63

Swanson, A.B., Wagner, P.A., Ganther, H.E. and Heokstra, W.G. Antagonistic effects of silver and tri-o-cresyl phosphate on selenium and glutathione peroxidase in rat liver and erythrocytes. Fed. Proc., 33:693 (1974).

Return to footnote 63 referrer

Footnote 64

Rusiecki, W. and Brzezinski, J. Influence of sodium selenate on acute thallium poisonings. Acta Pol. Pharm., 23: 74 (1966)

Return to footnote 64 referrer

Footnote 65

Levander, O.A. and Argett, L.C. Effect of arsenic, mercury, thallium and lead on selenium metabolism in rats. Toxicol. Appl. Pharmacol., 14: 308 (1969)

Return to footnote 65 referrer

Footnote 66

Sakurai, H. and Tsuchiya, K. A tentative recommendation for maximum daily intake of selenium. Environ. Physiol. Biochem., 5:107 (1975), cited in reference 12.

Return to footnote 66 referrer

Footnote 67

Smith, M.I., Franke, K.W. and Westfall, B.B. The selenium problem in relation to public health. Public Health Rep., 51: 1496 (1936)

Return to footnote 67 referrer

Footnote 68

Smith, M.I. and Westfall, B.B. Further field studies on the selenium problem in relation to public health. Public Health Rep., 52: 1375 (1937)

Return to footnote 68 referrer

Footnote 69

Beath, O.A. Selenium poisons Indians. Sci. News Lett., 81: 254 (1962)

Return to footnote 69 referrer

Footnote 70

Jaffé, W.G. Effect of selenium intake in humans and rats. In: Proc. Symp. on Selenium-Tellurium in the Environment. Industrial Health Foundation, University of Notre Dame, Notre Dame, IN. p. 188 (1976), cited in references 24, 77

Return to footnote 70 referrer

Footnote 71

Pletnikova, I.P. Biological effect and safe concentration of selenium in drinking water. Hyg. Sanit., 35:176 (1970)

Return to footnote 71 referrer

Footnote 72

Palmer, I.S. and Olson, O.E. Relative toxicities of selenite and selenate in the drinking water of rats. J. Nutr., 104: 306 (1974)

Return to footnote 72 referrer

Footnote 73

Schroeder, H.A. and Mitchener, M. Selenium and tellurium in rats: effect on growth, survival and tumors. J. Nutr., 101:1531 (1971)

Return to footnote 73 referrer

Footnote 74

Ransone, J.W. et al. Selenium sulfide intoxication. N. Engl. J. Med., 264: 384 (1961), cited in reference 41

Return to footnote 74 referrer

Footnote 75

International Agency for Research on Cancer. Some aziridines, N-, S- and O-mustards and selenium. IARC Monogr. Eval. Carcinog. Risk Chem. Man, 9: 245 (1975)

Return to footnote 75 referrer

Footnote 76

Schrauzer, G.N. Selenium and cancer: a review. Bioinorg. Chem., 5: 275 (1976).

Return to footnote 76 referrer

Footnote 77

Diplock, A.T. Biological effects of selenium and relationships with carcinogenesis. In: Carcinogenic and mutagenic metal compounds: environmental and analytical chemistry and biological effects. E. Merian, R.W. Frei, W. Härdi and Ch. Schlatter (eds.). Gordon and Breach Science Publ., New York, NY. pp. 433-439 (1985)

Return to footnote 77 referrer

Footnote 78

Fishbein, L. Toxicology of selenium and tellurium. Adv. Mod. Toxicol., 2: 191 (1977), cited in reference 41

Return to footnote 78 referrer

Footnote 79

Flessel, C.P. Metals as mutagens. Adv. Exp. Med. Biol., 91: 117 (1977).

Return to footnote 79 referrer

Footnote 80

Robertson, D.S.F. Selenium, a possible teratogen? Lancet, i: 518 1970), cited in reference 90.

Return to footnote 80 referrer

Footnote 81

Shamberger, R.J. and Willis, C.E. Selenium distribution and human cancer mortality. Crit. Rev. Clin. Lab. Sci., 2: 211 (1971), cited in reference 90

Return to footnote 81 referrer

Footnote 82

Robinson, M.F. et al. Blood selenium and glutathione peroxidase activity in normal subjects and in surgical patients with and without cancer in New Zealand. Am. J. Clin. Nutr., 32: 1477 (1979), cited in reference 24

Return to footnote 82 referrer

Footnote 83

Shamberger, R.J. and Frost, D.V. Possible protective effect of selenium against human cancer. Can. Med. Assoc. J., 100: 682 (1969)

Return to footnote 83 referrer

Footnote 84

Schrauzer, G.N., White, D.A. and Schneider, C.J. Cancer mortality correlation studies -- III: Statistical associations with dietary selenium intakes. Bioinorg. Chem., 7: 23 (1977)

Return to footnote 84 referrer

Footnote 85

Yu, S.-Y. et al. Regional variation of cancer mortality and its relation to selenium levels in China. Biol. Trace Elem. Res., 7: 21 (1985)

Return to footnote 85 referrer

Footnote 86

Shamberger, R.J., Willis, C.E. and McCormak, L.J. Selenium and heart disease. III. Blood selenium and heart mortality in 19 states. In: Trace substances in environmental health -- XII. D.D. Hemphill (ed.). University of Missouri Press, Columbia, MO. p. 59 (1979)

Return to footnote 86 referrer

Footnote 87

Salonen, J.T. et al. Association between cardiovascular death and myocardial infarction and serum selenium in a matched-pair longitudinal study. Lancet, ii: 175 (1982)

Return to footnote 87 referrer

Footnote 88

Allegrini, M., Lanzola, E. and Gallorini, M. Dietary selenium intake in a coronary heart disease study in northern Italy. Nutr. Res., Suppl. I: 398 (1985)

Return to footnote 88 referrer

Footnote 89

National Academy of Sciences. Recommended dietary allowances. 9th edition. Food and Nutrition Board, Washington, DC. p. 165 (1980), cited in references 12, 24, 25, 77, among others

Return to footnote 89 referrer

Footnote 90

Stewart, R.D.H., Griffiths, N.M., Thompson, C.D. and Robinson, M.F. Quantitative selenium metabolism in normal New Zealand women. Br. J. Nutr., 40: 45 (1978), cited in reference 12

Return to footnote 90 referrer